Maturation of Filopodia Shaft Adhesions Is Upregulated by Local Cycles of Lamellipodia Advancements and Retractions

نویسندگان

  • Wei Hu
  • Bernhard Wehrle-Haller
  • Viola Vogel
  • Maddy Parsons
چکیده

While cell-substrate adhesions that form between the protruding edge of a spreading cell and flat surfaces have been studied extensively, processes that regulate the maturation of filopodia adhesions are far less characterized. Since little is known about how the kinetics of formation or disassembly of filopodia adhesions is regulated upon integration into the lamellum, a kinetic analysis of the formation and disassembly of filopodia adhesions was conducted at the leading edge of β3-integrin-EGFP-expressing rat embryonic fibroblasts spreading on fibronectin-coated glass or on soft polyacrylamide gels. Filopodia β3-integrin adhesions matured only if the lamellipodium in their immediate vicinity showed cyclic protrusions and retractions. Filopodia β3-integrin shaft adhesions elongated rapidly when they were overrun by the advancing lamellipodium. Subsequently and once the lamellipodium stopped its advancement at the distal end of the filopodia β3-integrin adhesion, these β3-integrin shaft adhesions started to grow sidewise and colocalize with the newly assembled circumferential actin stress fibers. In contrast, the suppression of the cyclic protrusions and retractions of the lamellipodium by blocking myosin light chain kinase suppressed the growth of filopodia adhesion and resulted in the premature disassembly of filopodia adhesions. The same failure to stabilize those adhesions was found for the advancing lamellipodium that rapidly overran filopodia shaft adhesions without pausing as seen often during fast cell spreading. In turn, plating cells on soft polyacrylamide gels resulted in a reduction of lamellipodia activity, which was partially restored locally by the presence of filopodia adhesions. Thus filopodia adhesions could also mature and be integrated into the lamellum for fibroblasts on soft polyacrylamide substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanochemical model of cell migration on substrates of varying stiffness.

Cells propel themselves along a substrate by organizing structures at the leading edge called lamellipodia that contain the actin network, myosin, integrin, and other proteins. In this article, we describe a quantitative model that couples the response of stretch-sensitive proteins in the lamellipodia to the dynamics of the actin cytoskeleton, therefore allowing the cell to respond to different...

متن کامل

Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension.

In this study, adhesions on individual filopodial shafts were shown to control veil (lamellar) advance and to be modulated by guidance cues. Adhesions were detected in individual filopodia of sensory growth cones using optical recordings, adhesion markers, and electron microscopy. Veils readily advanced along filopodia lacking shaft adhesions but rarely advanced along filopodia displaying shaft...

متن کامل

Microtubule-targeting-dependent reorganization of filopodia.

Interaction between the microtubule system and actin cytoskeleton has emerged as a fundamental process required for spatial regulation of cell protrusion and retraction activities. In our current studies, analysis of digital fluorescence images revealed targeting of microtubules to filopodia in B16F1 melanoma cells and fibroblasts. We investigated the functional consequence of targeting on filo...

متن کامل

Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells.

A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 ...

متن کامل

L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling

Mounting in vitro, in vivo and clinical evidence suggest an important role for filopodia in driving cancer cell invasion. Using a high-throughput microscopic-based drug screen, we identify FDA-approved calcium channel blockers (CCBs) as potent inhibitors of filopodia formation in cancer cells. Unexpectedly, we discover that L-type calcium channels are functional and frequently expressed in canc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014